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Abstract

Receiver operating characteristic (ROC) analysis is a widely accepted method for analyzing and comparing the diagnostic
accuracy of radiological tests. In this paper we will explain the basic principles underlying ROC analysis and provide practical
information on the use and interpretation of ROC curves. The major applications of ROC analysis will be discussed and their
limitations will be addressed. © 1998 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

To address the clinical problems in everyday radiol-
ogy practice, a large and ever expanding array of
imaging modalities is available. This raises the question
of what particular test to use for what purpose. There is
thus, a need for a method to compare the diagnostic
accuracy of the various tests in an objective manner.
Over the last two decades, receiver operating character-
istic (ROC) analysis has increasingly been used for this
purpose, notably in radiology and clinical chemistry
[1,2]. Originally developed in the early 1950s for the
analysis of RADAR signal detection, ROC analysis
was first applied in psychophysical research [1,3,4]. In
the 1960s, Dr Lee Lusted was the first to recognize a
possible role for ROC analysis in medical decision
making [5,6].

In this article we will describe the principles underly-
ing ROC analysis and explain the advantages of this
method over conventional analysis, which uses com-
parison of sensitivity and specificity values. We will

provide practical information on how to use and inter-
pret ROC curves. The major applications of ROC
analysis will be discussed and their limitations will be
addressed.

2. Sensitivity and specificity: Need for ROC analysis

The traditional measures to quantify the diagnostic
accuracy of a test are sensitivity and specificity. These
parameters describe the fractions of patients (diseased
and non-diseased) that are classified correctly. The sen-
sitivity or true positive fraction (TPF) describes the
fraction of diseased patients that actually has a positive
test result. The specificity or true negative fraction
(TNF) describes the probability of a negative test result
in non-diseased individuals. Sensitivity and specificity
describe the results of a test in a dichotomous way: a
test result is either positive or negative. In this respect,
there is an analogy to the dichotomous treatment deci-
sions required in clinical practice. Should we operate on
this patient suspected of appendicitis or not? Should we
start antibiotic treatment for suspected pneumonia or
not?
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By their nature, however, most radiological tests are
not dichotomous; they contain much more detailed
information. Basically, radiological tests provide one of
the three following kinds of data:
1. Continuous quantitative data: The size of a lesion in

centimeters or the CT density of a lesion in hound-
sfield units can, in some situations, indicate the
histopathologic nature of the lesion [7]. Within a
certain range these data can have all possible values.

2. Rating scale data: Some test information is ex-
pressed in an ordinal manner on a rating scale with
a limited number of categories. The degree of renal
artery stenosis (B50% stenosis, 50–74% stenosis,
75–99% stenosis and occlusion) can be used for
further diagnostic and therapeutic work-up. Rotator
cuff pathology can be expressed in terms of normal
cuff, degenerative abnormalities, partial or complete
tear.

3. Qualitative data: Often no quantitative data are
provided. Many criteria used in radiology are of a
morphologic nature. Evaluation of the margin and
location of a lesion and of the presence and nature
of calcifications can all contribute to a more definite
diagnosis. These qualitative data can be integrated
into a dichotomous diagnostic decision. The evi-
dence of disease, however, is more convincing in
some cases than it is in others. Morphologic data
can also be integrated into an explicit confidence
judgement regarding the probability of disease. In
this way, qualitative data are converted to a contin-
uous or ordinal scale of disease probability.

When we translate diagnostic information into a
dichotomous yes or no answer, we need decision crite-
ria, or threshold values, to tell normal from abnormal.
The choice of this threshold value is subject to both
inter- and intra-observer variation. We can distinguish
under- and overreaders, who apparently use different
threshold values for their decisions. Depending on the
clinical situation, even a single radiologist will use
different threshold values for the same radiological test.
This illustrates that the diagnostic accuracy of a test is
inadequately described by a single pair of sensitivity
and specificity values. To obviate this problem, we need
to compare diagnostic tests by means that are indepen-
dent of the chosen threshold value.

3. The ROC curve: Basic principles

The choice of the threshold value influences both
sensitivity and specificity. For the ideal diagnostic test,
the probability distributions of test results indicating
presence or absence of disease do not overlap and the
chosen threshold value is in between these distributions
(Fig. 1). The resulting sensitivity and specificity are
both 100%. For most diagnostic tests, however, the

probability distributions of diseased and normal over-
lap. Any threshold value will lead to the misclassifica-
tion of some diseased patients as normal, or of some
individuals without the disease as diseased, or to both
(Fig. 2).

Applying a lower threshold value decreases the num-
ber of false-negative results (higher sensitivity; Fig. 2a),
but increases the number of false positives (lower spe-
cificity; Fig. 2b). Raising the threshold value, on the
other hand, will increase the number of false negatives
(lower sensitivity; Fig. 2a) and decrease the number of
false positives (higher specificity; Fig. 2b). There is thus,
a reciprocal relationship between sensitivity and specifi-
city. A higher sensitivity is associated with a decrease in
specificity and a lower sensitivity with an increased
specificity.

The ROC curve is the graphic representation of this
reciprocal relationship between sensitivity and specific-
ity, calculated for all possible threshold values (Fig. 3).
The vertical axis of the graph shows the sensitivity or
TPF. The horizontal axis represents the false-positive
fraction (FPF=1−specificity). Each operating point
on the ROC curve represents the combination of sensi-
tivity and specificity at a given threshold value. At
unrealistically high threshold values, all patients are
classified as normal, resulting in a TPF of 0 and a FPF
of 0 (specificity=1). This corresponds to the operating
point in the lower left-hand corner of the ROC graph.
Lowering the threshold will increase both the TPF and
FPF (lower specificity). For the lowest possible
threshold, the TPF and FPF are both 1 (specificity=0),
corresponding to the upper right-hand corner of the
ROC graph.

Fig. 1. The probability distributions of the results of a hypothetical
perfect diagnostic test. The results of the diseased and non-diseased
individuals show no overlap and the chosen threshold value is in
between these distributions. If the test result is higher than the
threshold value, the test is considered positive. Below the threshold
value the test is negative. All diseased and non-diseased patients are
classified correctly. Sensitivity and specificity are both 100%.



www.manaraa.com

A.R. 6an Erkel, P.M.T. Pattynama / European Journal of Radiology 27 (1998) 88–9490

Fig. 2. More realistic probability distributions of the results of a
diagnostic test. The results of diseased and non-diseased individuals
show some overlap. Variation of the threshold value will change both
sensitivity and specificity. (a) Demonstrates the influence of the
threshold value on the sensitivity. Applying a lower threshold value
results in fewer false-negative (FN) results (small grey area). The
fraction of true positives (TP) will be higher (higher sensitivity).
Raising the threshold will lead to a higher number of FN (large grey
area) and thus to a lower sensitivity. (b) Shows the influence of the
threshold value on the specificity. A lower threshold value will
increase the number of false-positive (FP) results (large grey area),
while the fraction of true negatives (TN) will be reduced (lower
specificity).

1. Spectrum bias: Owing to the natural spectrum of
pathologic, clinical and comorbidity aspects of both
normal and diseased individuals, the correct diagno-
sis is more difficult to make in some individuals
than it is in others [12]. The case-mix of patients in
the sample influences the position of the ROC curve
and must therefore, be representative of the popula-
tion for which the test is intended [3]. The case-mix
is of special importance if the test is preceded by
another test that is more or less based on the same
principle. Consider the following example. A large
pulmonary embolism with a segmental defect on
perfusion scintigraphy will probably be detected by
pulmonary angiography. On the other hand, an
embolism that does not result in a perfusion defect
is likely to be smaller and is less readily detected by
angiography. The sensitivity of pulmonary angiog-
raphy is said to be conditionally dependent on the
result of perfusion scintigraphy. The ROC curve of
pulmonary angiography for patients with a normal
perfusion scan differs from the curve for patients
with segmental perfusion defects (lack of a true
standard of reference for pulmonary embolism pre-
cludes the construction of an ROC curve for pul-
monary angiography).

2. Disease verification bias: Any diagnostic experiment
requires a diagnostic truth provided by a standard
of reference. The sensitivity and specificity of a test
will be influenced when the test result affects the
search for the diagnostic truth and its outcome
[3,8,12]. Consider again the example of pulmonary
embolism, for which pulmonary angiography is con-
sidered the standard of reference. The intensity of
the search for pulmonary embolism may be affected
by the results of the perfusion scintigraphy. If the
perfusion scan is normal, the patient may be consid-
ered free of pulmonary embolism and angiography
will not be performed. Even if all patients are
evaluated with the reference test, there is still a
chance of verification bias if the radiologist per-
forming the test is not blinded. If the perfusion
scintigraphy shows segmental perfusion defects, we
may look more closely for an embolism on angiog-
raphy, than if the perfusion scintigraphy is normal.
When we subsequently construct the ROC curve for
perfusion scintigraphy, we may overestimate the
sensitivity of perfusion scintigraphy and underesti-
mate its specificity.

5. Applications of ROC analysis: Comparing tests or
observers

Which test or observer discriminates best between
presence and absence of disease? The discriminative
ability of a test is determined by the amount of overlap

4. Practical aspects of ROC analysis

ROC analysis can be performed for tests that provide
either continuous data or rating-scale data. A rating
scale for confidence judgements will generally produce a
meaningful curve if five rating categories are used [8,9].
Several computer programs are available to estimate a
smooth ROC curve through the observed operating
points. The most widely used computer software pack-
age is the one developed by Metz et al. [10]. These
computer programs estimate a binormal ROC curve.
This binormal model is the generally accepted model
for ROC analysis and has been shown to be robust for
practical purposes [1,11].

In planning experiments to construct ROC curves,
special care must be taken to avoid selection bias in the
case sample. Two sources of selection bias are of partic-
ular importance.
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Fig. 3. The ROC curve (a) graphically represents the reciprocal relationship between sensitivity and specificity for all possible threshold values (b).
The vertical axis of this graph shows the true-positive fraction (TPF) or sensitivity. The horizontal axis represents the false-positive fraction (FPF)
or 1−specificity. Each threshold value corresponds to an operating point on the ROC curve which represents a combination of sensitivity and
specificity. With high threshold values [1], all patients are classified as non-diseased, resulting in a TPF of 0 and a FPF of 0 (specificity=1). This
corresponds to the operating point in the ‘lower left-hand corner’ of the graph. Lowering the threshold will increase both the TPF and FPF (i.e.
decrease specificity). For the lowest possible threshold [5] the TPF and FPF are both 1 (specificity=0), corresponding to the ‘upper right-hand
corner’ of the ROC graph.

between the probability distributions of the test results
of diseased and non-diseased patients. This overlap
determines the shape and position of the ROC curve. If
the probability distributions of diseased and non-dis-
eased are identical, i.e. they overlap completely, the
TPF and FPF are equal at any threshold value. The
test has no discriminative power and is essentially
worthless. The ROC curve of this test is a straight
diagonal from the lower left-hand corner to the upper
right-hand corner of the graph (Fig. 3a). The area
under this ‘curve’ is 0.5 (50% of the total area). An
ideal test, on the other hand, has no overlap between
the distributions. The ROC curve contains the optimal
operating point (i.e., TPF=1 and FPF=0), corre-
sponding to the upper left-hand corner of the ROC
graph. The area under this ROC curve is 1.0 (100% of
the total area).

The area under the ROC curve is a measure for the
diagnostic accuracy of a test and is often used to make
comparisons between diagnostic tests or observers [1,3].
With the appropriate computer software, the areas
under the ROC curves can be computed and tested for
significant differences with a univariate z-score test
[10,13]. Although the binormal assumption of the ROC
curve has proven to be valid, some authors recommend
using the non-parametric Wilcoxon statistic in analyz-
ing for differences between areas under the ROC curves
[14–17]. With non-parametric calculation of the area
under the curve, non-parametric methods for compar-

ing the area under the ROC curve are more appropriate
than the z-score test. It should therefore be understood,
that the significance of the differences between the areas
under ROC curves may vary with the method of analy-
sis used.

Comparison of two tests using the area under the
ROC curve is quite straightforward if each test is
interpreted by a single reader or observer. Statistical
testing becomes much more cumbersome whenever the
comparison involves ROC curves that are generated by
pooling data from multiple observers. Pooling data,
however, is often desirable, as it is a useful method to
average out the within-reader differences [8]. Several
approaches have been proposed, to deal with this prob-
lem. The commonly used paired t-test has the distinct
disadvantage that it does not take account of the case
sample variation [8,18]. The non-parametric method
recently suggested by Swaving et al. accounts for both
the within-reader and the case sample variation. All
methods however, have their own specific methodologi-
cal pros and cons, a detailed discussion of which is
beyond the scope of this paper. Interested readers may
wish to consult the papers by Metz and by Swaving et
al. [8,18].

The major advantage of comparing tests by means of
the area under the ROC curve is that this is done
independently of decision criteria, thus eliminating the
influence of the threshold value on sensitivity and spe-
cificity values. However, by doing so, another problem
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Fig. 4. How can ROC curves intersect? The position of the ROC curve depends on the shape and position of the probability distributions of
diseased and non-diseased individuals. When the highest threshold value in (a) is reduced, the TPF will rise immediately, while the FPF will change
only after further reduction of the threshold value. These probability distributions will result in a curve that is positioned on the left-hand side
of the graph (c: curve A). If the probability distributions are oriented as in (b), the TPF will rise when the highest threshold value is lowered, but
the FPF will rise sooner compared to the situation in (a). The ROC curve is positioned more in the upper right-hand quadrant of the graph (curve
B)

is created. A large part of the ROC curve consists of
clinically irrelevant TPF and FPF combinations. The
extreme corners of the ROC curve represent combina-
tions of either very high sensitivity with very low spe-
cificity or vice versa. In most clinical situations these
combinations are not useful. This problem is especially
relevant if the ROC curves of two different tests inter-
sect. Fig. 4 demonstrates how different probability dis-
tributions of test results result in intersecting ROC
curves. Whenever the clinical situation demands high
sensitivity, we want to use the test that results in a
higher ROC curve in the high sensitivity value range. In
Fig. 4c, for example, test B is preferred over test A,
because it has a higher specificity at the same high
sensitivity values. The total areas under the curves,
however, are equal and fail to reveal the superiority of
test B in this respect. Therefore, the area under the
curve is of limited use in comparing the diagnostic
accuracy of tests with intersecting ROC curves [19,20].

To address this problem, two methods for regional
assessment of the ROC curve have been suggested.
McGlish has advocated the analysis of a portion of the
ROC curve that is determined by a range of FPF values
[21]. This method allows comparison of the diagnostic
capacity of tests for a preset area of specificity values.
The partial area index (PAI), suggested by Jiang et al.
uses a preset area of sensitivity values [22]. The PAI is
calculated by dividing the estimated area under the
portion of the ROC curve of interest (the range of TPF
values above a preselected TPFo) by the maximum
possible area under this part of the curve. In this way
an index value is created, ranging from 0 to 1, that can
be used for comparisons analogous to the total area
under the curve [2,22].

The following example illustrates the use of ROC
analysis in comparing diagnostic tests. Jiang et al. used
ROC analysis to compare the diagnostic accuracy of a
group of five radiologists with that of a computer-aided
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diagnostic scheme in differentiating between benign and
malignant microcalcifications in mammography [22].
The probability of malignancy was estimated on a
continuous scale and the areas under the ROC curves
were calculated. The total areas under the ROC curves
of the individual radiologists did not differ significantly
from the area of the computer, as calculated with the
univariate z-score test. The combined area under the
curve of the five radiologists was 0.89 and for the
computer the total area under the curve was 0.92. The
difference was not significant (Student’s t-test). The
ROC curves intersected and therefore, the PAI was
calculated for the sensitivity range between 90 and
100%, which was considered clinically relevant. This
resulted in significantly different values for the com-
bined radiologists and the computer of 0.42 and 0.82,
respectively.

6. Applications of ROC analysis: Optimizing the
threshold value

Another potential use of the ROC curve is in opti-
mizing the threshold value of a test. The ROC curve
comprises all possible combinations of sensitivity and
specificity at all possible threshold values. This offers
the opportunity to assess the optimal threshold value to
be used in clinical practice.

In practice, choosing an optimal threshold value
based on ROC analysis is practicable only for continu-
ous data, e.g. Doppler velocity parameters for carotid
artery stenosis or CT-density for characterization of
adrenal masses [7,23]. For continuous data, all operat-
ing points on the curve correspond to realistic threshold
values. For ordinal test results, the smooth ROC curve
is falsely suggestive of continuity [2]. In this situation,
the ROC curve is a theoretical estimation based on a
limited number of observed operating points. Most of
the operating points on the ROC curve consist of
sensitivity and specificity combinations that do not
correspond to realistic threshold values. A similar prob-
lem occurs whenever a categorical rating scale of dis-
ease probability is used in generating the ROC curve.
This artificial ordinal scale is mostly used for scientific
purposes only. The actual threshold values that we use
in clinical practice are unclear and cannot be related to
the scientifically observed operating points.

In our group we have used ROC curves to compare
the diagnostic accuracy of CT and MRI in distinguish-
ing between adenomas and nonadenomas of the
adrenal gland [7]. Using the CT-density of the lesion
resulted in a significantly larger area under the curve
compared with all MRI-parameters. The continuous
character of the attenuation values allowed determina-
tion of the optimal threshold value. Using a threshold
value of 16.5 houndsfield units resulted in a sensitivity
and specificity of 100 and 95%, respectively.

Intuitively, one would identify the ‘optimal’ operat-
ing point as the point on the ROC curve that is closest
to the ideal upper left-hand corner. Determining the
optimal operating point on the ROC curve, however,
involves both clinical and financial issues. For instance,
pneumonia is a disease in which a large therapeutic
gain can be achieved at relatively little cost and with
few complications of the antibiotic treatment. Thus, a
certain amount of false positive results is acceptable,
whereas false negative results are less desirable. As a
result, in testing for pneumonia, the threshold value is
usually set low. In other words, the optimal operating
point will move towards the upper right-hand part of
the ROC curve. On the other hand, when we are
considering a costly and potentially harmful treatment
with only little therapeutic benefit, it is the false positive
results that are to be limited. The optimal range of the
operating point will thus, shift towards the lower left-
hand corner of the ROC graph. Clearly, in determining
the optimal threshold value, we have to take into
account all the clinical and financial consequences of
the different test results. Ideally, such decisions should
be made by linking the constructed ROC curve to
explicit decision analysis [24,25].

In summary, ROC analysis is a useful technique to
compare the diagnostic accuracy of radiological tests
and observers. The area under the curve provides an
objective parameter of the diagnostic accuracy of a test,
which is superior to comparing single combinations of
sensitivity and specificity values, since the influence of
the threshold value is eliminated. Because only part of
the ROC curve represents clinically relevant combina-
tions of sensitivity and specificity, comparing the ROC
curves in the relevant sensitivity or specificity ranges is
to be preferred over comparing the total area under the
curve.

In addition, ROC analysis can be used to determine
the optimal threshold value for tests that generate
continuous quantitative data. Choosing the optimal
operating point on the ROC curve involves both clini-
cal and financial issues and is ideally done by
combining ROC analysis with a formal cost-effective-
ness analysis.
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